
Vamsi Pasupuleti
Sijie Yang

HEAR THE NUMBERS
ARDUINO PROTOTYPING PROJECT

CONTENTS

- Introduction

- Research

- Design Rationale

- Prototyping

- Lessons Learned

In this project, we aimed at a marginalized group

of people whose eyesights are too defective to see

details on even very close objects. The intention of

our design is enabling those people to play a dice

in a conventional as well as familiar way, but “feel”

the numbers intuitively on each side of it through

interactive technology, which is Arduino platform

in our case. With this idea in mind, we finally made

an interactive fuzzy dice by using one Arduino

board, one RobotGeek sensor shield, one buzzer,

six tilt sensors and several wires. The prototype

has been programmed to play six distinguishable

sound patterns that represent figures from 1 to 6

respectively when it becomes stabilized on any flat

surfaces (e.g. table, floor) after people throw it out.

Thus people who are not able to see it can

easily tell which number is facing up by hearing

and comprehending meaningful sound patterns.

Each pattern can be played repetitively for confir-

mation purpose.

INTRODUCTION

Watch the demo video of our interactive dice

http://vimeo.com/78231959

RESEARCH

Initially we started with online research which was

inspired by our discussion about creating not only

playful toys with interactive technology but also

meaningful ones that trigger people’s reflection

upon conventional norms. In other words, we

would like to induce people to rethink about

existing ways of interaction through exploration

and redesign of a toy which has socially or

culturally habitual forms. This intention led us to

look into things such as traditional Indian toys.

In order to broaden our view and obtain deeper

understandings about current trend of toy making

as a comparison, we conducted field observa-

tion at one of the local stores, Kmart (picture 1).

On-site research gave us the chance that more

potential can be identified by going through large

amounts of available toys. Most of them are

basically representations of roles and activities that

are characterized by playfulness. For examples,

apart from variant sizes, colors and materials, the

major difference among toys cars is seemingly

their emulational or fantastic appearance.

However, there are significantly multiple ways of

playing with them. Such variance in interaction

became an interesting entry point where we finally

found our opportunity during that field research.

When we randomly grabbed a package of dices

from one of those shelves, we realized that dice is

a conventional toy which has existed for plenty of

time but its possibilities of being interactive hasn’t

been well reconsidered, especially under the

circumstance that technology enables more and

more opportunities to be discovered (picture 2).

Thus we came to the agreement that we wanted

to implement an interactive dice by taking

advantage of Arduino development kit in a way

that benefits its users, namely dice players whom

we defined as the blind in general, including

people whose eyesights are impaired

temporarily. Detailed rationale of selecting our

Concepting Phase

target user group can be found in the following

Design section.

RESEARCH

Picture 1. On-site Observation at Kmart Picture 2. A Package of Dice at Kmart

RESEARCH

After we decided to make a dice for people who

are unable to see things while playing with it,

acoustic and haptic feedbacks are two basic

options that can be used for complementing the

lack of visual information. As a result, the idea of

making sounds or vibrations or both came into our

minds. Our biggest challenge here was to figure

out ways of producing sounds or vibrations which

represent the numbers on each side of the dice

appropriately. Then parallel research was

conducted so that we could find out what kind

of Arduino compatible sensors may be useful for

either sound or vibration generating purpose, as

well as some sort of mechanism that allows the

sensors to respond to dice’s six dimensions

according to its landing position.

We found out online that tilt sensors (picture 3)

which connect or discount the circuit based on its

positioning and the influence of gravity can be an

affordable solution. The reason why we resorted to

those new sensors as opposed to only

using other sensors we had at hand was that what

we got from the development kit didn’t meet our

needs both in terms of quantity and functionality.

We would otherwise have made the most use of

sensors from the kit if a particular sensor was not

limited to its own particular usage. In fact, such

constraint led us to start thinking about taking

advantage of tilt sensors. Our research in this

phase unfolded the prototyping idea that we can

represent each figure by placing six tilt sensors on

each side of a dice. No matter which side ends up

facing up, the specific tilt sensor which stand for

that side will trigger sounds to be played through

the buzzer, or vibrations to be produced through

vibration motor. However, there is no compatible

vibration motor that is specialized for Arduino

platform so far. Hence, we moved on by focusing

on providing acoustic feedback only.

Implementing Phase

RESEARCH

Apart from tilt sensors, we also found a sensor

shield that is capable of accommodating individual

sensors and Arduino board at the same time. It

gave us a great opportunity to combine the shield

and the board together so that they became

compact enough to be put into a 3 inch x 3 inch

fuzzy toy dice.

Early experiments were proceeded as long as we

received those parts we ordered. Tilt sensors were

very sensitive and they worked well as expected.

More trials and errors appeared along way when it

came to subsequent production in which we tried

to make discrete things work along with each

other. More details will be talked about in the

remaining sections.

Picture 3. Robotgeek Tilt Sensor

DESIGN RATIONALE

Our intended user group consists of people who

are not able to see the numbers on the dice while

they are playing with the it, including the blind

population, people whose eyes are covered for

gaming reasons, and users who play in the low

light environments or even in darkness.

Normally a dice is supposed to be seen so that

people can tell what figure is displayed at the top

after being casted. But we thought there was an

opportunity that we can modify the dice and make

it equipped with unintended interactive capacities

in order to fulfill marginalized needs that have been

ignored by the public. Our prototype may not be

a perfect demonstration of our intention, but we

hope it serves as a modest spur to induce more

people to come forward with this valuable direc-

tion.

Intended Context of Use

We want to point out an important assumption we

hold here. That is, everyone deserves to be able

to experience playing with any toys in a mutually

meaningful way. By mutually meaningful way, we

mean effective interactions and proper feedback

that occur between a player and a playful object.

That being said, the intended context of use can

be any situations in which people who have visual

impairment play games that involve dice

individually or collaboratively. It also can be any

circumstances in which people intentionally cover

their eyes or stay in darkness while they are having

fun. In addition, one interesting scenario might be

using our design to test or reinforce people’s

mental ability of recognizing different sound pat-

terns for physiological study and so on.

Goals for the Experience

Like we mentioned above, we want to enable

people who are lack of visual sense to play a dice

like how normal people do, and to be capable of

Intended User Group

DESIGN RATIONALE

differentiating figures from 1 to 6 accurately, easily

and intuitively. Our way of achieving this goal is to

embed a lightweight and programmable sound

making system into an ordinary dice.

Why Should HCI Care

By making this dice which has been transformed

from its traditional type into a digitally interactive

kind, we propose that it is worthwhile to introduce

HCI into the exploration and redesign process of

conventional beings.

The development of HCI in practice is often driven

by curiosity in new ways of interaction. It happens

not just inside people’s minds but within a large

picture, namely social, cultural, and historical

contexts. However, if we tend to look for purely

novel design space and have the general notion of

user in mind, we already lost empathy on

people who may use the design in real life

situations. Instead of keeping our eyes on seeking

innovative approaches, rethinking about

existing norms, artifacts and activities that people

are familiar with can help us stay on track of

designing for actual users and scenarios. There

are a lot of underlying opportunities to be taken.

Besides, HCI should pay enough attention to

marginalized population who don’t have that much

access to interactive technology, because we

believe that interaction design should be substan-

tially regarded as a service which is intended to

empower people and improve our quality of life in

a pervasive manner.

PROTOTYPING

We started with analyzing various sensors to

achieve the desired outcome. Our initial idea is to

use flex and accelerometer sensor to detect the

touch and orientation of the dice. Upon exploring

and discussing with Austin Toombs, we zeroed on

using tilt sensors.

Tilt sensors can primarily classified into two types,

switch based and proportional tilt sensors.

a) Switch based tilt sensors: As the name

suggests, these are switch sensors just pose a

question whether they are tilted or not. The output

is two types: HIGH or LOW (On or Off). These are

further divided into two types. Mercury switch

sensor and Ball in a Cage Structure Switches.

Mercury fluid is in the first type and metal ball is

used for later one. The disadvantage with these

types of sensor are, they just give two out types.

b) Proportional tilt sensors: As the name says,

these sensors, the output is proportional to the

degree of tilt. One can detect multiple output with

these sensors. The disadvantage with these

sensors are they don’t long last, as they use

electrolysis method to detect multiple outputs.

For our prototype, the ideal tilt sensor would be

proportional tilt sensor, but due to unavailability of

sensors and it short expiry period. We have

chosen “Ball in a Cage Structure Switches” tilt

sensors.

The other challenge we felt we would foresee

while constructing the device is managing lot of

wires (6 wires for 6 tilt sensors, one wire for

buzzer, and wires joining arduino and breadboard).

The thought behind 6 tilt sensors and buzzer is to

place sensors on all the surface of the cube and

create switch HIGH (ON) state for a specific dice

facing up. Thus, every tilt switch corresponds to a

Prototyping Process

PROTOTYPING

number on the dice and based on the dice

number facing up, a tilt sensor is activated and

a corresponding sound played through buzzer

(output). The challenging we face here is to keep

arduino, breadboard and sensors inside the dice.

We looked, if we can find some shields which can

be attached to arduino and making it easier

manage wires around the cube. On further, we

discovered robotgeek manufactures making

robotgeek tilt sensors, robotgeek buzzer

(picture 4) and robotgeek sensor shield (picture 5).

Picture 5. Robotgeek Buzzer

Picture 4. Robotgeek Sensor Shield

PROTOTYPING

We started with testing the tilt sensor with chang-

ing the basic switch code (picture 6, please refer

to appendix for the code).

Picture 6. Basic Switch Code

Then we started building the code for 3 tilt sensors

(picture 7, please refer to appendix for the code).

Picture 7. 3 Tilt Sensors Code

Code Overview

PROTOTYPING

Finally, we programmed for six tilt sensors

(picture 8 and picture 9, please refer to appendix

for the code).

Picture 8. 6 Tilt Sensors Code Picture 9. 6 Tilt Sensors Code

PROTOTYPING

Once we felt comfortable with the code, we were

looking for right dice to insert arduino, sensors and

buzzer inside the dice. We found a 3 inch fuzzy

dice (picuture 10), which is constructed using a

form material and this is right kind of material to

secure and place arduino kit.

We programmed many versions of the code to

find right kind of experience for the people we

were designing. We were learning as we were

iterating the code. Finally, we had the best suit-

ed code for all the six tilt sensors and experience

(sound patterns) we intended to achieve. When

we used tilt sensors on all 6 sides of the cube, we

had issues with replicating the same experience

as earlier. This is due to high sensitive nature of

the ball moments in the tilt sensors, and we found

at times there were two tilt sensors activated. To

reduce the error prone situations, we are playing

the sounds associated to the number on the dice

in a loop (more than one time).

Picture 10. 3 Inch Fuzzy Dice

PROTOTYPING

Electronic Circuit Diagram (Robotgeek sensor shield is attached to Arduino board)

PROTOTYPING

Process Review

Picture 11. Assemble Arduino Board with Robotgeek Sensor Shield

From the left to the right in picture 11, we were assembling Arduino board with Robotgeek sensor shield. A

piece of paper was folded and inserted in between the USB port and the shield to avoid short circuit.

PROTOTYPING

Picture 12. Testing on Tilt Sensor

From the left to the right in picture 12, we were testing on the tilt sensor to see if it can work properly by

using a LED light to provide visual feedback as confirmation.

PROTOTYPING

Picture 13. Testing on 3 and 6 Tilt Sensors Working Together

From the left to the right in picture 13, we were running tests on the situations that either three tilt senors or

six sensors were combined and working together.

PROTOTYPING

Picture 14. Cutting the Fuzzy Dice

From the left to the right in picture 14, we were cutting the fuzzy toy dice and taking out its foam body. Only

one side of the dice was left open so that we can put everything back into it again afterwards.

PROTOTYPING

Picture 15. Placing Tilt Sensors on Foam Body of the Dice

From the left to the right in picture 15, we were placing all the sensors on the surface of the foam body by

using rubber bands. Each sensor was facing the side with a specific number they were representing.

PROTOTYPING

Picture 16. Sketching the Mapping Relationships

In picture 16, we were using our sketches to figure out the mapping relationships between numbers on

each side of the dice and their corresponding I/O ports on the sensor shield.

PROTOTYPING

Picture 17. Shaping Foam Body of the Dice

From the left to the right in picture 17, we were shaping the foam body of the dice in a measured manner

so that Arduino board as well as sensor shield can be fit inside well.

PROTOTYPING

Picture 18. Installing Sensor and Color Coding Wires

From the left to the right in picture 18, after we placed the board and the shield into the groove we cut, we

were installing all the sensors and color coding each wire with color pens and scotch tape.

PROTOTYPING

Picture 19. Using Five colors to Mark Wires

In picture 19, we used five different colors to mark five pieces of scotch tape separately. They were pasted

on five wires respectively and the last one was left blank so that we were able to distinguish them.

PROTOTYPING

Picture 18. Color Coding the wires

From the left to the right in picture 20, we were fixing all the tilt sensors and wires around the surface of the

foam cube by applying scotch tape. It allowed us to alter the arrangement without irrevocable settlement.

PROTOTYPING

Picture 21. Final Encapsulation of the Dice

In picture 21, finally this integrated interactive system was into the red dice cover. The opening was sealed

by using safety pins. One small hole was cut on the side with figure 3 in order to plug in USB power port.

PROTOTYPING

There were several issues showed up during the

prototyping process. All of them were solved one

by one in the end. We are going to talk about each

problem and the ways through which we fixed

them below.

Issue 1. Bad contact between Arduino

motherboard and RobotGeek sensor shield.

In our early trials on testing the circuit which

connects Arduino board, RobotGeek sensor shield

and those tilt sensors, we found that the buzzer

stopped working for some reasons. By trying to

solve it in different ways, it turned out that use

the larger female USB-B ports may cause a short

circuit on the V and Ground pins of port DIO-3. To

avoid this, we put a small piece of paper over the

USB connector so that the metallic parts wouldn’t

be touching each other anymore.

Issue 2. The tricky placement of tilt sensors on the

Reflection on Issues

body of the dice while testing.

After we made sure that each electronic

components work well, it was time to place them

onto the body of the dice. During our attempt to

make attachment, we thought about positioning

them inside or fixing them on the exterior

surfaces of the dice carefully. Based on how tilt

sensor works, both way required us to put each

sensors to be perpendicular to each side they

were facing against with. This awareness made us

decide to attach them externally so that it could be

easier to make any changes afterwards. We finally

used rubber bands to fix the tilt sensors

temporarily and successfully. [image]

Issue 3. Distinguishing different sound patterns for

representing different sides of the dice.

This was a basic concern for our prototype

throughout the entire process. One piece of

program which allowed the prototype to play six

variant pieces of melody recurrently was produced

for testing. It worked well but we still wanted it to

play representative sounds like one to six beeps to

map 1 to 6 numbers respectively. However, after

the modification code had been made, we tested

its performance and realized that no matter which

side is facing up, playing beeps for only once may

be hard for blind people to confirm what number it

is after all, especially there might be a chance that

beeping sounds become overlapped because of

possible delay, So we asked ourselves questions

like “what sound patterns are meaningful for

representing numbers when you cannot see

anything?” Then we looked back upon the

previous program and came up with the final

solution, which is playing the six representative

sound patterns in a continuous loop like what we

did for the testing.

Issue 4. The tricky placement of tilt sensors on the

body of the dice while assembling.

The internal dice body is a foam cube in the right

size that can accommodate Arduino board, sensor

shield, tilt sensors and all the wires we were using.

Just because we needed to put so many things all

in one space, a plan for positioning each

components properly was generated along the

way. For placing the board and shield, we

hollowed out the central part of the dice, leaving

two opposite sides open. For fixing the six

sensors, firstly we cut holes on each side of the

dice according to sensor’s size and shape so that

they can be fit into a relatively closed room, and

then we attached them onto the body of the dice

by using scotch tape. For organizing those wires,

we adopted color-coded tapes on each wire in

order to distinguish them while laying them over

the entire surface of the dice body.

PROTOTYPING

What would you do differently if you were to do it

again?

Our major challenge was the sensitive nature of tilt

sensors, we would pick proportional tilt sensors

which are way accurate the ball in a cage

structure tilt sensors. Also, we would buy a bigger

fuzzy dice, a 5 inch one, to organize and manage

the wire effectively in the dice.

What would you have liked to have included?

Our initial plans were also to include vibration

feature, i.e dice vibrate based on the number

facing up. This is to extend usage of interactive

dice for the people with both blind and deaf.

Further, our plans were also include led lights

instead of dots on the dice for the numbers, so

that one can use the dice to play in the dark.

What would you like to be able to do with Arduino

next?

We would like to play with wireless sensor

transmissions, and use arduino as a medium to

enhance the interactivity. We want to carry forward

our project, and start working on series of product

for the marginalized group of people we selected.

LESSONS LEARNED

[1] http://www.engineersgarage.com/articles/

what-is-tilt-sensor?page=2

[2] http://www.trossenrobotics.com/robot-

geek-sensor-shield?relatedid=1444

[3] http://www.trossenrobotics.com/robot-

geek-tilt-sensor

[4] http://www.trossenrobotics.com/robot-

geek-buzzer

REFERENCES

#define TILT 2

#define BUZZER 3

//variables to hold the current status of the button.

(LOW == unpressed, HIGH = pressed)

int tiltState = 0;

void setup() {

 // set the pin for the Buzzer as output:

 pinMode(TILT, INPUT);

 // initialize the pins for the pushbutton as inputs:

 pinMode(BUZZER, OUTPUT);

}

void loop(){

 tiltState = digitalRead(TILT); // read input value

 if (tiltState == HIGH)

 {

 // turn Buzzer on:

 digitalWrite(BUZZER, LOW); //turn the buzz-

er on

 }

 else

 {

 digitalWrite(BUZZER, HIGH);//turn the buzz-

er off

 }

}

APPENDIX
Basic Code Using Robotgeek Shield

#define TILT1 2

#define TILT2 4

#define TILT3 7

#define BUZZER 3

//variables to hold the current status of the button.

(LOW == unpressed, HIGH = pressed)

int tiltState1 = 0;

int tiltState2 = 0;

int tiltState3 = 0;

void setup() {

 // set the pin for the Buzzer as output:

 pinMode(TILT1, INPUT);

 pinMode(TILT2, INPUT);

 pinMode(TILT3, INPUT);

 // initialize the pins for the pushbutton as inputs:

 pinMode(BUZZER, OUTPUT);

}

void loop(){

 tiltState1 = digitalRead(TILT1); // read input value

 tiltState2 = digitalRead(TILT2); // read input value

 tiltState3 = digitalRead(TILT3); // read input value

 if (tiltState1 == HIGH &&)

 {

 // turn Buzzer on:

 digitalWrite(BUZZER, LOW); //turn the buzz-

er on

 }

 else

 {

 digitalWrite(BUZZER, HIGH);//turn the buzz-

er off

 }

APPENDIX
Code with Three Tilt Sensors

 //check if the second pushbutton is pressed,

and play a series of notes. Otherwise, nothing

happens.

 if (tiltState2 == LOW)

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(200);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(200);

 //play third note

 tone(BUZZER, 4500,165);

 delay(200);

 }

APPENDIX

 //check if the second pushbutton is pressed,

and play a series of notes. Otherwise, nothing

happens.

 if (tiltState3 == LOW)

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(500);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(500);

 //play third note

 tone(BUZZER, 4500,165);

 delay(500);

 }

 }

#define TILT1 2

#define TILT2 4

#define TILT3 7

#define TILT4 8

#define TILT5 12

#define TILT6 13

#define BUZZER 3

//variables to hold the current status of the button.

(LOW == unpressed, HIGH = pressed)

int tiltState1 = 0;

int tiltState2 = 0;

int tiltState3 = 0;

int tiltState4 = 0;

int tiltState5 = 0;

int tiltState6 = 0;

void setup() {

 // set the pin for the Buzzer as output:

 pinMode(TILT1, INPUT);

 pinMode(TILT2, INPUT);

 pinMode(TILT3, INPUT);

 pinMode(TILT4, INPUT);

 pinMode(TILT5, INPUT);

 pinMode(TILT6, INPUT);

 // initialize the pins for the pushbutton as inputs:

 pinMode(BUZZER, OUTPUT);

}

void loop()

{

 tiltState1 = digitalRead(TILT1); // read input value

 tiltState2 = digitalRead(TILT2); // read input value

 tiltState3 = digitalRead(TILT3); // read input value

 tiltState4 = digitalRead(TILT4); // read input value

 tiltState5 = digitalRead(TILT5); // read input value

APPENDIX
Code with Six Tilt Sensors

 tiltState6 = digitalRead(TILT6); // read input value

 if (tiltState1 == HIGH)

 {

 // turn Buzzer on:

 digitalWrite(BUZZER, LOW); //turn the buzz-

er on

 }

 else

 {

 digitalWrite(BUZZER, HIGH);//turn the buzz-

er off

 }

 //check if the second pushbutton is pressed,

and play a series of notes. Otherwise, nothing

happens.

 if (tiltState2 == LOW)

APPENDIX

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(200);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(200);

 //play third note

 tone(BUZZER, 4500,165);

 delay(200);

 }

 //check if the second pushbutton is pressed,

and play a series of notes. Otherwise, nothing

happens.

 if (tiltState3 == LOW)

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(500);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(500);

 //play third note

 tone(BUZZER, 4500,165);

 delay(500);

 }if (tiltState4 == LOW)

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(1000);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(1000);

 //play third note

 tone(BUZZER, 4500,165);

 delay(1000);

 }

 //check if the second pushbutton is pressed,

and play a series of notes. Otherwise, nothing

happens.

 if (tiltState5 == LOW)

APPENDIX

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

quency 3500, for 165ms

 delay(500);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(200);

 //play third note

 tone(BUZZER, 4500,165);

 delay(500);

 }if (tiltState6 == LOW)

 {

 //play first note

 tone(BUZZER, 3500,165);//the tone() func-

tion will generate a tone on pin BUZZER at fre-

APPENDIX

quency 3500, for 165ms

 delay(200);//tone() will set the buzzer for

165ms, but we still need to wait before we issue

the next tone() command. If we wait a littl

 //play second note

 tone(BUZZER, 4000,165);

 delay(500);

 //play third note

 tone(BUZZER, 4500,165);

 delay(200);

 }

}

